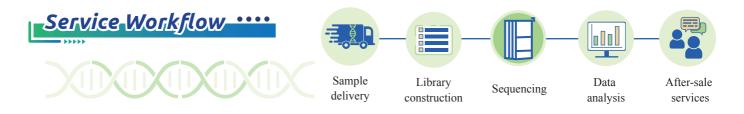


Hi-C based Chromatin Interaction


Product Introduction

Accumulative evidence has shown that spatially arranged chromatin interactions play a vital role in gene expression regul -ation. The 3D folding of chromosomes brings distant regulatory elements into close spatial proximity, by which regulation of genes can be achieved. Hi-C is a method designed to capture chromosome configuration by combining probing proximity -based interactions and high-throughput sequencing.

Technical,Features

DNA fragments of long linear distance while close in spatial structures are fixed and enriched for Pair-end sequencing. This technology empowers us to reveal the interactions between chromosome compartments and 3D structure of genome, which provides vital clues for novel intergenetic regulatory mechanisms.

Bioinformation,List....

1. Hi-C library preparation and sequencing

- Correlation between Hi-C libraries;
- Interaction decay exponents(IDEs).

2. Chromosome interaction

- Genome-wide Hi-C interaction profiling (cis/trans analysis);
- Genome-wide Hi-C interaction heatmap;
- Compartment A/B; TAD; Genome-wide Loop.
- 3. Differential analysis on 3D chromatin structure.

<u>Service,Advantages....</u>

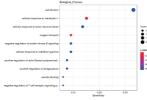
- ✓ Extensive experience with over 1000 Hi-C libraries constructed for over 800 species.
- ✓ Over 100 published cases with an accumulative impact factor of over 900.
- ✓ Customized restrict enzyme design to ensure optimal Hi-C efficiency on different species. Up to 93% valid interaction pairs have been achieved.
- ✓ In-house patents and software copyrights for Hi-C experiments and data analysis.
- ◀ After-sale services: After-sale services are valid for 3 months upon project completion, including project follow-up, trouble-shooting, results Q&A, etc.

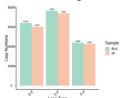
Service Specifications

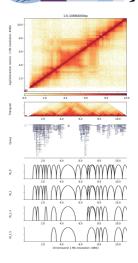
Platform	Recommended data	Resolution	Turnaround Time
Illumina PE150	$Loop \ge 150 \times$	10 Kb	50-80 days
	$TAD \ge 50 \times$	40 Kb	(Depending on species)


<u>Sample Requirements</u>

Frozen tissue	Cells
1-2 g	10^7


Genome-wide distribution of loops


Hi-C interaction heat map


Genome-wide distribution of A/B Compartment switching

KEGG enrichment on differential TAD related genes

Enhancer and promoter prediction on loop anchor sites analysis

Visualization of TADs

Featured Publications

Year	Journal	Paper	Applications	DOI
2021	Acta Pharmaceutica Sinica B	3D disorganization and rearrangement ofgenome provide insights into patho -genesis of NAFLD by integrated Hi-C, Nanopore, and RNA sequencing	Disease treatment	10.1016/j.apsb.2021.03.022
2021	Neuro-Oncology	The comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma	Disease treatment	doi.org/10.1093/neuonc/noab156

Biomarker Technologies (BMKGENE) GmbH

9 BioZ, Johann-Krane Weg

≥ tech@bmkcloud.com

42, 48149 Münster, Germany 🌘 www.bmkgene.com Copyright@2009-2023 Biomarker Technologies (BMK) GmbH. All Rights Reserved. Information and specifications are subject to change at any time without notice.