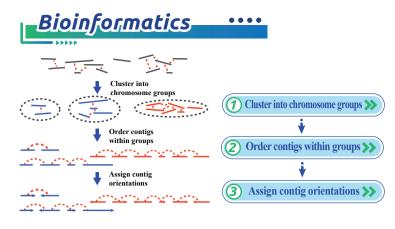

Hi-C based Genome Assembly

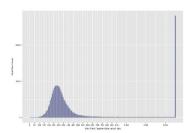

Hi-C is a technique that uses proximity-based interactions and high-throughput sequencing to capture chro-mosomal configurations. It is beneficial in enhancing genome assembly by identifying long-range and intricate interactions between genomic regions, which can aid in scaffolding and orienting contigs to construct chromosome-level genomes. BMKGENE has accomplished over 1000 successful cases and holds numerous patents in this area.

Technical-Work-Flow****

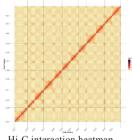
Service Workflow

<u>Service,Advantages....</u>

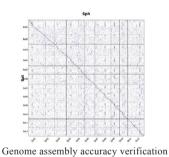
- No need in constructing genetic population for contig anchoring;
- Higher marker density leads to higher contigs anchoring ratio at above 90%;
- **S** Extensive experience with over 1000 Hi-C libraries constructed for over 800 species, including highly complex, polyploid or giant genomes;
- Over 100 published cases with an accumulative impact factor of over 900;
- In-house patents and software copyrights for Hi-C experiments and data analysis;
- Self-developed visualized data tuning software, enables manual block moving, reversing, revoking and redoing.


Service-Specifications

Library Type	Platform	Read Length	Recommend Strategy
Hi-C	Illumina	PE150	≥ 100X


<u>Sample Requirements</u>

	Animal	Fungus	Plants	
	ozen tissue: 1-2g per library Cells: 1e7 cells per library	Frozen tissue: 1g per library	Frozen tissue: 1-2g per library	
*We strongly recommend sending at least 2 to 4 aliquots (1 g each) for the Hi-C experiment.				


Demo Results ****

Hi-C library assessment

Hi-C interaction heatman

using collinearity analysis

Featured Publications

BMKGENE

Biomarker Technologies (BMKGENE) GmbH

- BioZ, Johann-Krane Weg
- ★ tech@bmkcloud.com
- 42, 48149 Münster, Germany www.bmkgene.com