
Human Whole Genome Sequencing

Whole genome sequencing delivers a comprehensive collection of small and large genetic variations across the entire human genome. It provides fundamental data resources for characterizing genetic markers associ

-ated with a variety of biological processes, which paves the way for new insights into diseases, cancers, population evolution, etc. BMKGENE offers human whole genome sequencing services on both Next -generation sequencing and Third-generation sequencing platforms to tackle different scientific questions.

Service Workflow

Bioinformatics

- Raw data quality control
- 4 Small InDel identification and annotation
- **6** Distribution of variations on genome

- Alignment with reference genomeSNP identification and annotation
- SV, CNV identification and annotation
 (Long read sequencing or high depth)
- Function annotation on variation (NR, SwissProt, GO, KEGG, COG, KOG, Pfam)

- (Long read sequencing or high depth)
- 3 Variant pathogenicity screening and functional enrichment analysis (Long read sequencing)

Service, Advantages · · · ·

Detects multiple types of variations Whole genome sequencing detects various types of variations, including SNP, InDel, SV, CNV, etc.

Whole genome sequencing covers the entire genome, including exonic, intronic, non-coding, and Comprehensive genome information intergenic regions, providing comprehensive detection.

Diverse platform options BMKGENE offers PacBio, Nanopore long read sequencing, and NGS Illumina sequencing platforms.

BMKGENE provides real-time quality control tracking for DNA extraction, library quality, sequencing Rigorous quality control process base quality, sequence alignment, etc.

Professional team BMKGENE has professional experimental, analysis, and service teams.

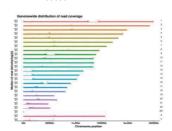
Service Specifications ••••

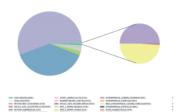
Platform	Library	Sequencing Depth
Illumina NovaSeq	PE150	30 -50 X
Nanopore PromethION 48	Nanopore - 8 Kb	≥30 X
PacRio Revio	CCS-HiFi	>10 X

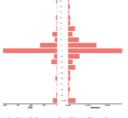
<u>Sample,Requirements</u> ····

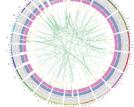
Platform	Conc. (ng/µl)	Amount (µg)	OD 260/280	
Illumina NovaSeq	≥1	≥0.2	1.6-2.5	Limited degradation
Nanopore PromethION 48	≥20	≥2	1.7-2.2	and protein or RNA
PacBio Revio	≥50	≥10	1.7-2.2	contamination

Featured Publications



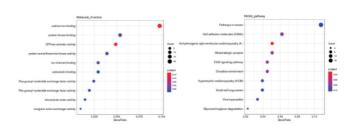



Demo Results



SNP/InDel Annotation

Distribution of chromosome coverage depth



InDel length distribution

Circos plot of variation distribution

#Variant Region	All	test
Total Pathogenic	795,299 18	795,299
Likely pathogenic	528	528
VUS Likely benign	296,436 178	296,436 178
Benign	498,139	498,139

Statistics of variant pathogenicity classification

GO/KEGG Functional Enrichment

BMKGENE

Biomarker	Technologies	(BMKGENE)	GmbH

- ❷ BioZ, Johann-Krane Weg 42, 48149 Münster, Germany 🌘 www.bmkgene.com
- ≥ tech@bmkcloud.com

Copyright@2009-2023 Biomarker Technologies (BMK) GmbH. All Rights Reserved. Information and specifications are subject to change at any time without notice.

 -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
 _	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	_	-	_	-	-	_	-	-	-	-	-	-	-
 -	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	-	_	-	_	-	-	_	-	-	-	-	-	-	-
 -	_	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-